Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.

Identifieur interne : 002522 ( Main/Exploration ); précédent : 002521; suivant : 002523

Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.

Auteurs : Taku Tsuyama [Japon] ; Ryo Kawai ; Nobukazu Shitan ; Toru Matoh ; Junji Sugiyama ; Arata Yoshinaga ; Keiji Takabe ; Minoru Fujita ; Kazufumi Yazaki

Source :

RBID : pubmed:23585651

Descripteurs français

English descriptors

Abstract

Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.

DOI: 10.1104/pp.113.214957
PubMed: 23585651
PubMed Central: PMC3668080


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.</title>
<author>
<name sortKey="Tsuyama, Taku" sort="Tsuyama, Taku" uniqKey="Tsuyama T" first="Taku" last="Tsuyama">Taku Tsuyama</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kawai, Ryo" sort="Kawai, Ryo" uniqKey="Kawai R" first="Ryo" last="Kawai">Ryo Kawai</name>
</author>
<author>
<name sortKey="Shitan, Nobukazu" sort="Shitan, Nobukazu" uniqKey="Shitan N" first="Nobukazu" last="Shitan">Nobukazu Shitan</name>
</author>
<author>
<name sortKey="Matoh, Toru" sort="Matoh, Toru" uniqKey="Matoh T" first="Toru" last="Matoh">Toru Matoh</name>
</author>
<author>
<name sortKey="Sugiyama, Junji" sort="Sugiyama, Junji" uniqKey="Sugiyama J" first="Junji" last="Sugiyama">Junji Sugiyama</name>
</author>
<author>
<name sortKey="Yoshinaga, Arata" sort="Yoshinaga, Arata" uniqKey="Yoshinaga A" first="Arata" last="Yoshinaga">Arata Yoshinaga</name>
</author>
<author>
<name sortKey="Takabe, Keiji" sort="Takabe, Keiji" uniqKey="Takabe K" first="Keiji" last="Takabe">Keiji Takabe</name>
</author>
<author>
<name sortKey="Fujita, Minoru" sort="Fujita, Minoru" uniqKey="Fujita M" first="Minoru" last="Fujita">Minoru Fujita</name>
</author>
<author>
<name sortKey="Yazaki, Kazufumi" sort="Yazaki, Kazufumi" uniqKey="Yazaki K" first="Kazufumi" last="Yazaki">Kazufumi Yazaki</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23585651</idno>
<idno type="pmid">23585651</idno>
<idno type="doi">10.1104/pp.113.214957</idno>
<idno type="pmc">PMC3668080</idno>
<idno type="wicri:Area/Main/Corpus">002633</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002633</idno>
<idno type="wicri:Area/Main/Curation">002633</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002633</idno>
<idno type="wicri:Area/Main/Exploration">002633</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.</title>
<author>
<name sortKey="Tsuyama, Taku" sort="Tsuyama, Taku" uniqKey="Tsuyama T" first="Taku" last="Tsuyama">Taku Tsuyama</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kawai, Ryo" sort="Kawai, Ryo" uniqKey="Kawai R" first="Ryo" last="Kawai">Ryo Kawai</name>
</author>
<author>
<name sortKey="Shitan, Nobukazu" sort="Shitan, Nobukazu" uniqKey="Shitan N" first="Nobukazu" last="Shitan">Nobukazu Shitan</name>
</author>
<author>
<name sortKey="Matoh, Toru" sort="Matoh, Toru" uniqKey="Matoh T" first="Toru" last="Matoh">Toru Matoh</name>
</author>
<author>
<name sortKey="Sugiyama, Junji" sort="Sugiyama, Junji" uniqKey="Sugiyama J" first="Junji" last="Sugiyama">Junji Sugiyama</name>
</author>
<author>
<name sortKey="Yoshinaga, Arata" sort="Yoshinaga, Arata" uniqKey="Yoshinaga A" first="Arata" last="Yoshinaga">Arata Yoshinaga</name>
</author>
<author>
<name sortKey="Takabe, Keiji" sort="Takabe, Keiji" uniqKey="Takabe K" first="Keiji" last="Takabe">Keiji Takabe</name>
</author>
<author>
<name sortKey="Fujita, Minoru" sort="Fujita, Minoru" uniqKey="Fujita M" first="Minoru" last="Fujita">Minoru Fujita</name>
</author>
<author>
<name sortKey="Yazaki, Kazufumi" sort="Yazaki, Kazufumi" uniqKey="Yazaki K" first="Kazufumi" last="Yazaki">Kazufumi Yazaki</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cell Membrane (metabolism)</term>
<term>Chimera (MeSH)</term>
<term>Cinnamates (metabolism)</term>
<term>Cupressus (metabolism)</term>
<term>Cycadopsida (metabolism)</term>
<term>Lignin (metabolism)</term>
<term>Microsomes (metabolism)</term>
<term>Pinus (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Protons (MeSH)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Chimère (MeSH)</term>
<term>Cinnamates (métabolisme)</term>
<term>Cupressus (métabolisme)</term>
<term>Cycadopsida (métabolisme)</term>
<term>Lignine (métabolisme)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Microsomes (métabolisme)</term>
<term>Pinus (métabolisme)</term>
<term>Plantes (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protons (MeSH)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Transport biologique (MeSH)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Cinnamates</term>
<term>Lignin</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Cupressus</term>
<term>Cycadopsida</term>
<term>Microsomes</term>
<term>Pinus</term>
<term>Plants</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Cinnamates</term>
<term>Cupressus</term>
<term>Cycadopsida</term>
<term>Lignine</term>
<term>Membrane cellulaire</term>
<term>Microsomes</term>
<term>Pinus</term>
<term>Plantes</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Chimera</term>
<term>Protons</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chimère</term>
<term>Protons</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23585651</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>162</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.</ArticleTitle>
<Pagination>
<MedlinePgn>918-26</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.113.214957</ELocationID>
<Abstract>
<AbstractText>Lignin biosynthesis is an essential physiological activity of vascular plants if they are to survive under various environmental stresses on land. The biosynthesis of lignin proceeds in the cell wall by polymerization of precursors; the initial step of lignin polymerization is the transportation of lignin monomers from the cytosol to the cell wall, which is critical for lignin formation. There has been much debate on the transported form of the lignin precursor, either as free monolignols or their glucosides. In this study, we performed biochemical analyses to characterize the membrane transport mechanism of lignin precursors using angiosperms, hybrid poplar (Populus sieboldii × Populus grandidentata) and poplar (Populus sieboldii), as well gymnosperms, Japanese cypress (Chamaecyparis obtusa) and pine (Pinus densiflora). Membrane vesicles prepared from differentiating xylem tissues showed clear ATP-dependent transport activity of coniferin, whereas less than 4% of the coniferin transport activity was seen for coniferyl alcohol. Bafilomycin A1 and proton gradient erasers markedly inhibited coniferin transport in hybrid poplar membrane vesicles; in contrast, vanadate had no effect. Cis-inhibition experiments suggested that this transport activity was specific for coniferin. Membrane fractionation of hybrid poplar microsomes demonstrated that transport activity was localized to the tonoplast- and endomembrane-rich fraction. Differentiating xylem of Japanese cypress exhibited almost identical transport properties, suggesting the involvement of a common endomembrane-associated proton/coniferin antiport mechanism in the lignifying tissues of woody plants, both angiosperms and gymnosperms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tsuyama</LastName>
<ForeName>Taku</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kawai</LastName>
<ForeName>Ryo</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shitan</LastName>
<ForeName>Nobukazu</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matoh</LastName>
<ForeName>Toru</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sugiyama</LastName>
<ForeName>Junji</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yoshinaga</LastName>
<ForeName>Arata</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Takabe</LastName>
<ForeName>Keiji</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fujita</LastName>
<ForeName>Minoru</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yazaki</LastName>
<ForeName>Kazufumi</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002934">Cinnamates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>M6616XLU2J</RegistryNumber>
<NameOfSubstance UI="C016316">coniferin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002934" MajorTopicYN="N">Cinnamates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029781" MajorTopicYN="N">Cupressus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032462" MajorTopicYN="N">Cycadopsida</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008861" MajorTopicYN="N">Microsomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011522" MajorTopicYN="N">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23585651</ArticleId>
<ArticleId IdType="pii">pp.113.214957</ArticleId>
<ArticleId IdType="doi">10.1104/pp.113.214957</ArticleId>
<ArticleId IdType="pmc">PMC3668080</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Dec;13(6):724-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Nov;216(1):72-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12430016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1968 Mar;3(1):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5641608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):925-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Dec;106(4):1313-1324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):1939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16024684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):2023-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1750-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Rev Cell Mol Biol. 2009;276:263-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19584015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2004 Dec 15;52(25):7651-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15675817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 May;221(2):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15871031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):726-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):188-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1001-1013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Nov 22;271(47):29666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8939899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 7;278(45):44320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):618-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Jul 10;22(13):1207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 May;99(1):170-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:585-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Fujita, Minoru" sort="Fujita, Minoru" uniqKey="Fujita M" first="Minoru" last="Fujita">Minoru Fujita</name>
<name sortKey="Kawai, Ryo" sort="Kawai, Ryo" uniqKey="Kawai R" first="Ryo" last="Kawai">Ryo Kawai</name>
<name sortKey="Matoh, Toru" sort="Matoh, Toru" uniqKey="Matoh T" first="Toru" last="Matoh">Toru Matoh</name>
<name sortKey="Shitan, Nobukazu" sort="Shitan, Nobukazu" uniqKey="Shitan N" first="Nobukazu" last="Shitan">Nobukazu Shitan</name>
<name sortKey="Sugiyama, Junji" sort="Sugiyama, Junji" uniqKey="Sugiyama J" first="Junji" last="Sugiyama">Junji Sugiyama</name>
<name sortKey="Takabe, Keiji" sort="Takabe, Keiji" uniqKey="Takabe K" first="Keiji" last="Takabe">Keiji Takabe</name>
<name sortKey="Yazaki, Kazufumi" sort="Yazaki, Kazufumi" uniqKey="Yazaki K" first="Kazufumi" last="Yazaki">Kazufumi Yazaki</name>
<name sortKey="Yoshinaga, Arata" sort="Yoshinaga, Arata" uniqKey="Yoshinaga A" first="Arata" last="Yoshinaga">Arata Yoshinaga</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Tsuyama, Taku" sort="Tsuyama, Taku" uniqKey="Tsuyama T" first="Taku" last="Tsuyama">Taku Tsuyama</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002522 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002522 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23585651
   |texte=   Proton-dependent coniferin transport, a common major transport event in differentiating xylem tissue of woody plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23585651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020